
Data Structures

Augustin Cosse.

Spring 2021

February 2, 2021

Strings

• In Java, the char type stores a value that represents a single
character encoded through single quotes, such as ’G’

• For sequences of characters, Java equivalently provides the
String class

• A string encodes a sequence of zero or more characters

• Java uses double quotes to designate string literals.

• String are declared and initialized as

String s = "CSCI-UA 9102 Data

Structures and Algorithms"

Strings

• Each character c in a string can be referenced using an index
corresponding to the number of characters that come before c
(that is if c is at position n in s, it can be accessed as s[n− 1])

• Two strings can be combined through concatenation as shown
below

String sentence = "word1" + " " + "word2"

• An important aspect of the string class in Java is that
instances are immutable (once an instance is created and
initialize it cannot be changed)

• If you want to modify a string, you must therefore create a
new string with the character replaced

Strings

• Strings can however be re-assigned

greeting = greeting + ’!’

// becomes "greeting!"

• In order to support efficient editing of strings, Java provides a
StringBuilder

Strings

• The StringBuilder class supports the following methods

• setCharAt(k, c): changes the character at index k with
character c

• insert(k,s): Insert a copy of string s starting at index k of the
sequence, shifting existing characters further back to make
room

• append(s): Append string s to the end of the sequence

• reverse(): Reverse the current sequence

• toString(): Return a traditional String instance based on the
current character sequence.

Wrappers

• There are several data structures and algorithms in Java that
only work with objects (not primitive types)

• To get around this obstacle, Java provides a wrapper class for
each base type

Base type Class Name Creation example Access Example
boolean Boolean obj = new Boolean(true); obj.booleanValue()

char Character obj = new Character(’Z’); obj.charValue()
byte Byte obj = new Byte((byte) 34); obj.byteValue()
short Short obj = new Short((short) 100) obj.shortValue()

int Integer obj = newInteger(1045); obj.intValue()
long Long obj = new Long(10849L); obj.longValue()
float Float obj = new Float(3.934F); obj.floatValue()

double Double obj = new Double(3.934); obj.doubleValue()

Wrappers

• In some contexts, Java provides implicit conversion (boxing
and unboxing) between instances of the Wrapper class and
primitive types

• The wrapper types also provide parse parseInt, parseDouble,
parseFloat,.. that return the primitive value associated to a
string

Integer a = new Integer(12); //

int k = a // implicit call to a.intValue()

int m = j+a // automatic unboxing before addition

// example of conversion from string

Integer b = new Integer("123")

int n = Integer.parseInt("2021")

Arrays

• A common task in programming is to keep track of a
sequence of values

• This can be done using arrays which store a sequenced
collection of variables

• Each cell in the array has an index which uniquely refers to
the value stored in that cell

• The length of the array is sometimes known as its capacity
and be accessed as a.length

• The cell with index k is accessed as a[k]

Arrays

• To avoid ’out of bounds’ references (which can lead to buffer
overflow attacks), Java always check array indices to
determine whether or not they are out of boud. If they are,
the runtime Java environment signals an error

• Arrays in Java are neither a base time nor an instance of a
particular class. To declare a variable to have an array type,
Java uses the (square) bracket notation followed by the type
of the variable

int[] primes;

• To initialize the array, we use the round brackets

int[] primes = {2,3,5, 7,11,13,17,19,23,29};

Arrays

• Arrays can also be initialized with the new operator as shown
below. In this case all the elements are automatically assigned
to the default value of the indicated type (false if boolean and
null if element type)

double[] measurements = new double[1000];

• The size of the array is fixed once it has been created. To
append elements at the back of the array, it is however
possible to create a larger array and they copy all the elements
from one array to the next

Arrays.copyOf(originalArray, newSize)

Enum Type

• On top of the previously discussed types, Java also provides an
elegant way to represent choices from a finite set by defining
what is known as an enumerated type (enum for short)

public enum Day {MON, TUE, WED, THU, FRI,

SAT, SUN}

• Once defined, Day becomes an official type and it becomes
possible to declare variables or parameters with the type day

• The declaration and assignment of a value in the case of an
enum type can then be done as follows

Day today;

today = Day.TUE

Expressions, Literals, operators

• Variables, literals and operators can be combined to form
expressions which define new values

• Java allows the following types of literals

• The null object reference

• Boolean true or false

• Integer (the default for an integer is to be of type int which
means 32 bits integer, A long integer should end with an ”L”
which indicates a 64bits integer)

• Floating point. The default for floating point values is that
they are double. To specify that a literal is a float, it must
end with an ”F” or ”f”. Floating point literals in exponential
notation are also allowed such as 3.14E or .19e10

• In Java, character constants are assumed to be taken from the
unicode alphabet. For example ’a’ and ’?’

Expressions, Literals, operators

• In addition to the Unicode alphabet, Java also defines the
following special character constants

’\n’ (newline) ’\t’ (tab)
’\b’ (backspace (terminal)) ’\r’ (return)
’\f’ (form feed) ’\\’ (backslash)
’\’ ’ (single quote) ’\t’ (double quote)

• Finally, the last type of literals are String literals (sequence of
characters enclosed in double quotes) such as ”dogs cannot
climb trees”

Expressions, Literals, operators

• Java expressions involve combining literals with variables and
operators

• Java defines the following arithmetic operators: + (addition),
- (subtraction), * (multiplication), / (division), % (modulo)

• The modulo operator is defined as nmodm = r if n = mq + r
for integers q and 0 ≤ r < m (remainder)

• Parentheses and the unary minus can be used as in regular
arithmetic

Expressions, Literals, operators

• When used on strings, the (+) operator performs
concatenation so that the code

String rug = "carpet"

String dog = "spot"

String mess = rug + dog

will produce the string ”carpetspot”

Expressions, Literals, operators

• Like in C/C++ Java provides increment (++) and decrement
(–) operators

• If those operators are placed in front of a variable, then 1 is
added to this variable and the resulting value is read into the
expression

• If it is used after the variable, then the value is first read and
then the variable is incremented or decremented

int i = 8;

int j = i ++; // j becomes 8 and then i becomes 9

int k =++i; // i becomes 10 and then k becomes 10

int n = 9+ --i;

Expressions, Literals, operators

• Java also supports standard logical operators (whose result s a
boolean value.)

< less than
<= less than or equal
== equal to
! = nnot equal to
>= greater than or equal to
> greater than

• The logical operators can also be applied to char in which
case the result of the comparison is determined according to
the underlyinng character codes

• Finally, note that a == b is true if a and b refer to the same
object. Most object types also support an equal method
a.equals(b) which returns true if a and b refer to similar
instances of a class (not necessarily the same)

Expressions, Literals, operators

• For boolean values, Java also defines the usual operators !
(not), && (conditional and) as well as || (conditional or)

• For those operators, Java implements a form of short
circuiting. I.e. the second operand in the expression will only
be evaluated if needed (if the first operand in && is false or if
the first operand in || is true, the second will not be evaluated)

• Correspondingly Java provides bitwise operators (working on
integers and booleans and returning 0/1)

∼ bitwise complement
& bitwise and
| bitwise or
ˆ bitwise exclusive or
<< shifts bits left, filling in with zeros
>> shift bits right, filling in with sign bits
>>> shift bits right, filling in with zeros

Expressions, Literals, operators

• The standard assignment operator in java is the = operator.
Note that

j = k = 25

is totally valid because assignments are evaluated from right
to left.

• Java also provides a couple of compound assignment operator
of the form variable op= expression which are equivalent to
the expression variable = variable op expression.

a[5] = 10;

j = 5;

a[j++]+=2; // leaves a[6] = 12 and j = 6

/* note that this is different from

a[j++] = a[j++]+2 */

Operator precedence

When parentheses are not used, precedence is determined
according to the following rules

Type Symbol

1 array index []
Method call ()
dot operator .

2 postfix ops exp ++, exp –
prefix ops ++exp, –exp, +exp, -exp, ∼ exp !exp
cast (type) exp

3 multi./div. * / %
4 add./ subt. + -
5 shift << >> >>>

Operator precedence

Type Symbol

6 comparison < <= > >= instance of
7 equality == =!
8 bitwise and &
9 bitwise xor ˆ
10 bitwise or |
11 and &&
12 or ||
13 conditional booleanExpression ? valueIfTrue : valueIfFalse
13 Assignment = += -= *= /= %= <<= >>=

>>>= &= ˆ= |=

Type conversion

• Type conversion in Java is done through (implicit or explicit)
Casting.

• Casting from double to int is known as narrowing while
casting from int to double is known as widening

double d1 = 3.2;

double d2 = 3.9999;

int i1 = (int) d1;

double d3 = (double) i1;

Type conversion

• Explicit casting cannot convert a primitive type into a
reference type or vice versa but as we have already seen with
the wrappers (conversion between primative to object), there
are other methods that can be used (for example to convert
between string and the primitive type)

String s1 = "2014";

int i1 = Integer.parseInt(s1);

int i2 = -35;

String s2 = Integer.toString(i2);

Type conversion

• In some frameworks, Java can perform implicit casting

• This works for example for widening casts. However, it will
fail in the narrowing framework

int i1 = 42;

double d1 = i1; // works

i1= d1; // fails

• Implicit casting works also in the context of some arithmetic
operations (addition and subtraction)

• For division however the cast has to be explicit

3+5.7 // returns a double

(double) 7/4 // equivalent to (double 7)/4

// returns 1.75

7/4 // returns 1.

Type conversion

• There is one situation in which implicit casting is the only
option allowed. It is in string concatenation

• Any time a string is concatenated with a base type or an
object, the base type or object is automatically transformed
into a string

• To perform an explicit conversion to a string, we must use the
toString method. An laternative is to perform an implicit cast
through a concatenation operation

String s = Integer.ToString(22)

String t = "" + 4.5

Control Flow

• Control Flow in Java is siilar to other languages, including if
statements, switch statements , break and continue
statements

• The structure of the if and if else statements are as follows

if (booleanExpression)

trueBody

else

falseBody

if (firstbooleanExpression)

firstBody

else if(secondBooleanExpression)

secondBody

else

thirdBody

Control Flow

• With the former syntax the bodies are limited to single
statements. For block statements, the curcly brackets must be
used

• The value tested in the if statements must be a boolean in
Java

• If the curly brackets are not used, only the first line is
considered as being part of the if statement. In general it is
better to use the brackets.

Control Flow

• Just as the other main programming languages, Java provides
multiple value control flow through the switch statement

switch(d) {

case MON:

system.out.println("This is tough");

break;

case TUE:

system.out.println("This is better");

break;

case WED:

system.out.println("Half way there");

break;

default:

system.out.println("Day off!")

}

Loops
• Java provides three main types of loops.

• While loops

while (booleanExpression){

loop Body}

• Do-while loops

do { loopBody }

while(booleanExpression);

• For loops

for (init.; booleanCondition; increment){

loopBody }

Loops

• For all of those loops, if you omit the braces, only the first line
following the statement will be executed. As a result it is
always a good thing to use the braces.

• The initialization, boolean condition and increment in the for
loops are of the form

for (int j=0; j<n; j++){

// body of loop

}

Loops

• On top of the main loops, since looping over a collection of
elements is a common process, Java also provides a shorthand
notation for such loops known as for-each loop. The syntax is
the following

for(elementType name: container){

loopBody

}

Explicit Control Flow Statements

• Java provides a number of commands that explicitly change
the flow of control of a program:

• The first such statement is return. If a method is declared
with a return type of void, the flow of control returns when it
reaches the last line of the body of the method or when it
encounters a return statement with no argument

• If the method is defined with a return type, the method must
exit by returning an appropriate value

Explicit Control Flow Statements

• The break statement was already used to exit from the body
of the switch statement. More generally it can be used to exit
from any switch, for, while or do while statement body.

• When executed, the break statement causes the flow to jump
to the next line after the loop.

Explicit Control Flow Statements

• A last control statement which can be used inside a loop is
the continue statement.

• The continue statement causes the the execution to skip over
the remaining steps of the current iteration of the loop body
but then, unlike the break statement, the flow returns to the
top of the loop, assuming that the condition remains satisfied

Input and Output in Java

• Java provides a number of classes that enable the programmer
to develop graphical user interfaces (including pop up
windows and pull down menus), as well as methods for the
display and input of text and numbers.

• Simple input output in Java either occurs through a special
pop up windows, or through the terminal

• The default output in Java is to the terminal.

• Java provides a built in static object: System.out that
performs output to the terminal

Input and Output in Java

• The System.out object is an instance of the
java.io.PrintStream class. This class defines methods for a
buffered output stream, meaning that characters are put in a
temporary location, called buffer which is then emptied when
the console window is ready to print characters

• The java.io.Printscreen class provides the following methods
to perform simple output

print(String s) Print the string s
print(Object o) Print the object o using the ’toString’ method

print(baseType b) Print the base type value b
println(String s) Print s followed by the new line char.

println(Object o) Print(o), followed by new line char.
println(baseType b) Print(b), followed by newline char.

Input and Output in Java

• Consider the following code fragment

System.out.print("Java values: ");

System.out.print("3.1416 ");

System.out.print(’ , ’);

System.out.print(15);

System.out.println(" (double, char, int). ");

When executed,this fragment will print Java values: 3.1416, 15
(double,char,int).

Input and Output in Java

• Just as there is a special object for performing output to the
Java console, there is also a special object called System.in for
performing input from the Java console

• Technically, the input is coming from the ”standard input”
device, whichby default is the computer keuboard echoing its
characters in the Java console

• A simple way of reasing input with this object is to use it to
create a Scanner object using the expression

new Scanner(System.in)

Input and Output in Java

import java.util.Scanner;

public class InputExample {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter your age in years: ");

double age = input.nextDouble();

System.out.print("Enter your maximum heart rate: ");

double rate = input.nextDouble();

double fb = (rate - age)*0.65;

System.out.println("Your ideal fat-burning

heart rate is " + fb); }}

Input and Output in Java

• The Scanner class reads the input stream and divides it into
tokens which are strings of characters separated by delimiters

• A delimiter is a special kind of string and the default delimiter
is the white space

• Tokens are separated by strings of space, tabs and new line by
default

• Tokens can either be read immediately as strings, or the
Scanner class can convert a token to a base type, if the token
has the right form

Input and Output in Java

• The scanner class includes the following methods for dealing
with tokens

hasNext() returns true if there is another token
in the input stream

next() returns next token string in input stream
hasNexType() returns true if there is another token in the stream

and it can be interpreted as a base Type
(boolean, ... double)

nextType returns the next token in the input stream
returned as the base Type corresponding to Type
ex. nextInt()

Input and Output in Java

• The Scanner class can also process input line by line, ignoring
delimiters and even look for patterns within lines while doinng
so. The methods for processing lines in this way include the
following

hasNextLine() returns true if the input stream has
another line

nextLine() Advances the input past the current
line ending and returns
the input that was skipped

findInLine(String s) Attempt to find a String matching
the pattern s

The Math class

• For some of the exercises of today, you might need the math
class

• The Math class provides a large number of basic mathematical
functions that are often helpful in making calculations.

• All of the methods from the math class are static methods,
which means they can be invoked through the name of the
class without having to instantiate an object of the class first

• As an example, the line below computes the absolute value of
the number stored in total adds it to the value of count raised
to the fourth power and stores the result in the variable value.

value = Math.abs(total) + Math.pow(count, 4);

The Math class

static int abs(int num) absolute value
static double acos(double num)
static double asin(double num)
static double atan(double num)
static double cos(double angle)
static double sin(double angle)
static double tan(double angle)
static double ceil(double num)
static double exp(double power) epower

static double floor(double num)
static double pow(double num, double power)
static double random() rand. num in [0,1[
static double sqrt(double num)

